Macroeconomic Policy Transmission and International Interdependence: A SVAR Application to Brazil and US

Maria Helena Ambrosio Dias* and Joilson Dias**

Abstract: Economic policy transmission between trading partners have been analyzed over different contexts in the literature. Depending on real or nominal frictions, the results indicate possible beggar-thy-neighbor effects for policies, given international trade, and need for coordinating policies. The baseline model is Corsetti and Pesenti (2001) of macroeconomic interdependence. The theoretical proposition suggests that a no anticipated economic policy of exchange rate depreciation creates a beggar-thyself effect. Yet, many economies have engaged in this policy to enhance exports and improve welfare. Here, fiscal policy transmissions over Brazilian economic aggregates are investigated, considering Brazil as home and US as foreign country. The problem is specified in a Structural VAR (Vector Autoregression) model, taking Granger causality tests and Impulse Response analysis as econometric applications. The results indicate that expansionary fiscal policy in US has a beggar-thy-neighbor effect for the Brazilian economy in the long-run. The policy transmission mechanism relies on the terms of trade. In addition, real money balances are affected by foreign fiscal policy, affecting the efficiency of domestic monetary policy.

Keywords: Policy transmission, fiscal policy, beggar-thy-neighbor, SVAR
JEL: F41- Open Economy Macroeconomics; F42- International Policy and Transmission

1. Introduction

By late 60’s, the problem of macroeconomic interdependence of national policies in face of a fixed exchange rate had gathered attention by international nation wild institutions, policymakers and economic researchers (COOPER, 1969; ROPER, 1971). Concerning that the international means of exchange, the dollar, was growing fast, mainly because a growing American debt brought over many questions to policy transmission analysis and repercussion effects among nations. How much of a macroeconomic policy practice abroad can be internalized by fixed, or pegged, exchange rate systems? Which are the channels these policies being transmitted? How broad is the extension, or spillover effects, of national macroeconomic policies to world market economies?

These issues remained afterward. In the 70’s, according to Dornbusch (1976), Helpman (1976), Frenkel e Razin (1977), many events collaborated to enhance the debate. In particular, the break of Bretton Woods System, world input price shocks, recessions, captured more elements to the problem, like flexible exchange rates and heavy competition through depreciation, as the 1980’s advanced (COOPER, 1986; FRANKEL, 1988; DEVEREUX E WILSON, 1989). Policy transmissions and the need for coordination of policies among nations, engaged in world trade, was then discussed in a new context, focusing domestic economic stability and different exchange rate regimes (HENDERSON, 1977; DORNBUSCH, 1982; ANDRESEN E EVERAERT, 1987; AOKI, 1987).

* Full Professor at the Department of Economics and Graduate Program of Economics in the State University of Maringá (PCE/UEM). Research of Fundação Araucária (Paraná State). Email: mhadias@uem.br
** Full Professor at the Department of Economics and Graduate Program of Economics in the State University of Maringá (PCE/UEM). (PCE/UEM). Researcher of the National Counsel of Research (CNPq). Email: jdias@uem.br
The authors thanks financial support of BNDES and suggestions of anonymous referees.
All results and comments are the sole responsibility of the authors and do not reflect the views of the Institutions they pertain.
In general, as the approach of international interdependence developed, its theories and applications were improved by the inclusion of new elements, although these were old issues in markets. From 90s, microeconomic foundations of wage arrangements in the labor market and of pricing under monopolistic competition incorporated the analysis over the consequences and opportunities of international macroeconomic interdependence (Obstfeld and Rogoff, 1995; Wren-Lewis, 1997; Betts and Devereux, 2000; Diboglu, 2000). According to Betts and Devereux (2000), different from Mundell (1968), Obstfeld and Rogoff (1995) showed that monetary policy may not be a beggar-thy-neighbor instrument under flexible exchange rate, using a model of monopolistic competition and sticky prices. Hence, there would be no incentive to engage in a competitive depreciation. As a result, would be little space for international coordination, and it could even reduce world welfare.

Among the proposals, the contribution of Corsetti and Pesenti (2001) stands out for improving a case appointed by Obstfeld and Rogoff (1995), discussing the effects of national policies on trade partners. One intriguing result of the model, shown theoretically, was that the policy of an “unanticipated exchange rate depreciation can be beggar-thyself rather than beggar-thy-neighbor.” This is a policy frequently used by nations to implement exports and national welfare. The authors presented different results of those of Obstfeld and Rogoff (1995). In their seminal paper, “Exchange Rate Dynamics Redux”, Obstfeld and Rogoff argued that there could be incentive to home agents become lenders internationally. However, Benigno and Benigno (2003, p. 756) state that “[…] gains from international cooperation may be possible, even if markets are complete and producer currency pricing holds.”

In this context, we developed an empirical analysis of the model of macroeconomic interdependence and welfare of Corsetti and Pesenti (2001) for Brazil, the domestic economy, and the United States, the foreign economy, in order to replicate the results found in the theoretical model about the effects of fiscal policies among trade partners. The solutions of the model of Corsetti and Pesenti (2001) generate two sets of equations. The first is represents short-term relations, which highlights the effects of monetary policy on economic aggregates: output (Y), consumption (C), nominal interest rate (R), terms of trade (TT) and the nominal exchange rate (E). These effects are transitory and with no direct consequences for the formulation of economic policy in the long run for the domestic country, here Brazil. The second set of equations represents long run relations from the theoretical model, especially fiscal policy effects. In the long run, the fiscal position of the world (domestic and foreign economies combined) is a determinant of real money balances and affects the behavior of main aggregate variables, such as: long run output (\bar{Y}), long run consumption (\bar{C}), long run real balances (\bar{m}), the terms of trade (\bar{TT}), here real exchange rate, and domestic prices (P_h).1

The empirical methodology SVAR (Structural Vector Autoregressive) is applied here because besides estimating the long run effects indicated by the theory specifying the dependent variable of the system equations and the independent ones, allows us evaluating the transitory shocks, or shocks occurring only once, and the permanent shocks, those accumulated on time. Moreover, these empirical models permit to assess the interaction between fiscal and monetary policy on the relationship between the real money balances and fiscal policy, interfering in the efficiency of monetary policy through real balances effects.

The paper is organized as follows. Section II presents a discussion of the New Open Economy Macroeconomics (NOEM) in the context of empirical analyzes. Then, we describe the data set used, the empirical methodology, and the main results of selected literature. Section III discusses the results for the Brazilian economy. Appendix I contains theoretical results of Corsetti and Pesenti (2001), Appendix II

1 As indicated in Appendix I.
shows main equations of the empirical analysis. Overall, the transmission of macroeconomic policy among nations helps understanding the consequences of recent international events.

2. Macroeconomic Interdependence and Specific Rigidity

As the real and nominal rigidities were incorporated with rigorous formulations, analyzes of the effects of economic policy shocks gained greater robustness. Helpman (1976) shows the consequences of fiscal policies under flexible exchange rate regime to employment and relative prices considering nontradable and tradable goods sectors. Within a system of wage restrictions and sticky prices in terms of foreign currency for the home country, expansionary fiscal policy would not affect output and employment if the additional expenses occurred in tradable goods, yet would create a trade account deficit. On the other side, if government spending happens to be on nontradable goods, then it increases the output of nontradable goods sector and reduces the sector of tradable. Also, it expands trade account deficits. The employment will rise if the nontradable goods sector be labor-intensive, but will fall if otherwise.

In Devereux and Wilson (1989), the international interdependence was discussed over the coordination of fiscal and monetary policies. With expansionary fiscal policy practiced simultaneously by trading partner countries it could achieve higher employment without imbalances in the current account. Ignoring the potential benefits to the partner, both countries would follow excessively restrictive fiscal policies. Given the non-cooperative game, it would imply lower income and employment in both trading partners, featuring a typical beggar-thy-neighbor policy. Furthermore, an expansionary monetary policy could bring to domestic economy adverse consequences, depending on whether the wage rigidity occurred in the domestic or foreign country, and which economy was leading the strategic policy game.

Thus, the lack of coordination involves spillover effects, resulting in excessively restrictive fiscal policies. With mutual coordination of economic policies, however, both countries would have better results for welfare. Devereux and Wilson (1989) also analyze the existence of unfavorable adversities to cooperation arising from the quality of information among partners. The analyses of international transmission of macroeconomic policy enhanced with Obstfeld and Rogoff (1995), Exchange Rate Dynamics Redux. Under an intertemporal approach with nominal price rigidities in the short run and explicit microeconomic foundations to the aggregate supply, in which output market is imperfectly competitive, producing differentiated goods, world consumption and world government spending takes the form of a weighted sum of domestic and foreign spending.

Obstfeld and Rogoff (1995, p. 629) emphasize that the purchasing power parity applies to consumer prices because countries consume the same basket of goods, but does not hold for the output deflators, then the terms of trade are flexible. Also, the domestic and foreign nominal prices of producers (nominal producer prices) are predetermined in the short run. Then, export prices are fixed in domestic currency of each producer market. However, producer prices in the foreign currency may vary if the exchange rate fluctuates (Obstfeld and Rogoff, 1995, p. 637). A permanent fiscal policy shock causes increase in government spending on goods of both countries, but increases taxes only for domestic residents. Leisure and consumption would fall in the domestic economy, as well as the nominal interest rate. If price is rigid in the short run and the expansion of spending remains for the future, the real interest rate temporarily decreases, resulting in currency depreciation, confirming the fall in relative private consumption. But the net effect of the shock on global aggregate demand is still increasing, given the additional government spending. Therefore, permanent fiscal policy is not beggar-thy-neighbor and could be implemented.

2 Duplicated from Dias, Dias, and Punzo (2012).
Considering the monetary policy, global aggregate demand increase in the initial period and both countries would benefit if a positive increase in the money supply is provided. Expansionary monetary policy would be prosper-thy-self and prosper-thy-neighbor, dispensing policy coordination. However, from the point of view of the performance of fiscal and monetary policy, macroeconomic interdependence among trade partners could be harmful to independent action of recessive policies, spreading to both countries, but there would be no incentives for countries to engage in these policies.

Corsetti and Pesenti (2001) expanded Obstfeld and Rogoff (1995), highlighting the implications for economic policy of changing nominal or real rigidities in the economic environment, reaching different results. According to Corsetti and Pesenti (2001), the new open macroeconomics (NOEM) analyzes the interrelationships between internal and external sources of economic distortions. Economic distortions can be associated with the degree of openness of an economy to trade, through the power of a country to affect its terms of trade by manipulating the supply of their products. In this sense, they propose a theoretical analysis over the monetary and fiscal transmissions among interdependent economies (Corsetti and Pesenti, 2001, p. 422).

Thus, Corsetti and Pesenti (2001) in Welfare and Macroeconomic Interdependence created a structure in which firms act competitively, implying alignment of goods prices at home and abroad, while there are real frictions in the labor market and wage predetermined. The goods market operates under monopolistic competition. Following the resource constraint of Obstfeld and Rogoff (1995), the equilibrium positions of short and long run assets of both economies are zero. Therefore, adjustments to shocks fall over the variations of the terms of trade, without changing the position of the net domestic assets (Corsetti and Pesenti, 2001: p. 432).

The analysis of Corsetti and Pesenti (2001) emphasizes the effects of economic policy shocks on the product of a country, depending on their degree of openness and its size in the world market. In the case of a closed economy, the increase in welfare due to a small monetary shock occurs when the highest level of domestic consumption, achieved through politics, dominates the "disutility" resulting from additional work effort. Given a large shock, the marginal benefit of a monetary expansion is positive for all shocks, whose size does not violate the participation constraint (Corsetti and Pesenti, 2001, p. 437).

In contrast, when the economy is opened and small, an expansionary monetary policy would increase the world monetary supply \(M_W = M_t(M^*)^{1-\gamma} \). This would reduce real interest rate causing outflows of capital from the economy implementing the shock, depreciating domestic exchange rate. As a result, aggregate demand increases. On the other hand, the increase in the exchange rate drives the economy towards a lower purchasing power of domestic money. “The negative terms of trade externality may more than offset the positive aggregate demand externality described above.” In the long run, the authors argued that this monetary shock would be neutral because home prices would move together with money supply, making consumption and output to return to their initial levels along with real money balances and exchange rate.5

In accordance with the model, if the economy is large, the effects of large expansionary monetary policy are even worse than those described for the small economy case when policy-makers use it in an attempt of close the gap between actual and potential output. In both cases of small and large opened economies, expansionary policies could be beggar-thy-self. Moreover, “only if the monetary expansions were jointly implemented, […] the exchange rate effect would disappear, and each country would benefit from bringing output to its potential level” (Corsetti and Pesenti, 2001, p. 438). This result is opposite to Obstfeld and Rogoff’s (1995) one.

4 Ghironi (2001) expands this analysis by changing this hypothesis.
By the contrary, expansionary fiscal policies in home country could affect trade partners in a negative way. Fiscal shocks are unexpected changes in the long run (any time period above one) government spending to output ratios \((g = \frac{Y}{Y-G})\). The long-run levels of government spending are determined endogenously and held only over domestic goods. Additionally, permanent fiscal shocks imply setting the level of short-run spending to its long-run level. “The crucial element is that domestic government spending is exclusive in domestic goods...” (Corsetti and Pesenti, 2001, p. 440).

According to the model, “an unexpected fiscal expansion has no short-run effect on domestic demand and employment at unchanged terms of trade.” This is so because changes in government spending do not directly affect the marginal utility of private consumption and because the equilibrium exchange rate depends only on relative money supply \((\frac{M_r}{M/M^*})\). The authors argue that if the hypothesis of money demand as function of both private and public consumption is included, then the model’s results could hold as follows: whenever there was an expansionary fiscal policy, there should be an accommodating monetary policy in such a way that there would be no change in exchange rate. In this case, an expansionary fiscal policy would not cause the exchange rate to appreciate. Then, a temporary fiscal policy would not affect economy more than one period. However, the effects of a permanent fiscal policy shock are not neutral and are highly related to the elasticity of intertemporal substitution \((1/\rho)\). The authors explain that:

“When the shock is permanent, however, the increase in demand for Home goods requires an upward adjustment of Home wages in the long run. Thus, in the new steady state the relative price of Home goods rises, and the Home currency appreciates in real terms. Because of the real wage adjustment, long-run Home output increases by less than public spending, and world consumption falls while prices increase in both countries. The economy reaches a new steady state corresponding to lower consumption and higher output levels relative to the initial steady-state allocation.” (Corsetti and Pesenti, 2001, p. 440).

In the case of a increase in government spending abroad \((g^*)\), it would increase world government spending \([g_w = g^*(g^*)^{1-\gamma}]\) with reflects over national economy in the long run. Since the condition that government spending lays only on national goods holds to both economies. Initially, it would increase the demand for foreign goods that could be attended if real wages in foreign country rises, so foreign output increase is possible. It would increase foreign price and deteriorate home terms of trade and reduce domestic real wages. Private consumption would fall in foreign country because the increase in foreign output would be smaller than its spending increment. It also would decrease in home country because the national deteriorated terms of trade. Moreover, if the expansion abroad increases home inflation, it would also decrease real money balances, adding up to the negative impact of consumption. The effect over home production would depend on \(\rho\). According to Corsetti and Pesenti (2001, p.440),

“When the Foreign fiscal shock reduces the availability of Foreign goods to world consumers \((Y^*-G^* \text{ falls})\), world demand for Home goods increases if the two national goods are substitutes \((\rho>1)\), and falls otherwise.”

Hence, Corsetti and Pesenti (2001, p. 441) shows that in many situations the fiscal policy shock spillovers are beggar-thy-neighbor. Considering the theoretical results discrepancies found to the effects of economic policy between Obstfeld and Rogoff (1995) and Corsetti and Pesenti (2001), we investigate the implications of fiscal policies on the main economic aggregates of Corsetti and Pesenti (2001) for the Brazilian economy, taking the American economy (US) as foreign country.

6 If \(\rho<1\), then home and foreign goods are complements. However, if \(\rho>1\), home and foreign goods are substitutes.
7 An expanded version of this analysis is in Dias and Dias (2010).
3. Empirical Analysis of International Macroeconomics Transmission

The economic relations presented in Corsetti and Pesenti (2001) result from a complex structure of international macroeconomic interactions among nations. Given the theoretical conclusions reached, here are SVAR applications to the long run economic relations, reflecting the effects of fiscal policy of both countries combined (Brazil and US) to the main aggregate of domestic economy (Brazil). Short run analyses are performed by the impulse response functions through unique shock, or transitory ones. The problem of estimating time series has received special attention from econometricians in recent decades. The methodology of analysis of economic relations in the short and long run completely changed. New concepts and techniques were introduced to conduct empirical research. In what follows, we present the main points of the time series analysis with structural VAR and over the issue of economic interdependence and pricing.

3.1. Data Base

Since the model considers international economic relations between two countries, we chose the American (US) and Brazilian (BR) economies to apply the model of Corsetti and Pesenti (2001). According to the Brazilian Treasury Secretary (Ministério da Fazenda do Brasil), from 1980 through 2000, the US economy represented 25% of Brazilian trade balance flow, reducing in the last decade to about 16%. Although the weight of the Brazilian economy has not the same degree for the US economy, it has been an important partner for the Brazilian international commerce. For this reason, the Brazilian economy is the Home country and the U.S. economy is the Foreign one. The period of analysis ranges from 1980:I to 2009:II, because of data availability and volume of trade. The data source comes from IFS and IPEA.8

Recall the period of analysis cover many events occurring in the Brazilian economy, 1980 to 2009. Brazilian economic shock of 1994, Real Stabilization Plan (Plano Real de Estabilização da Economia), was especially important to the series of real exchange rate to the behavior of the nominal exchange rate and the home wholesale price. Another important event was the effect of the Plano Verão I (Summer Plan I), 1989, for the reduction of inflation in the Brazilian economy over household consumption expenditure. There were also possible effects from the shock of Cruzado Plan I and II (Plano Cruzado I and II), for containment of inflation, over the real money balances series. In addition, many shocks over home price index may be included. Since all these shocks had as main objective to reduce inflation or its acceleration, these had direct effect over home goods price. The economic shock of 1990 was called Plano Collor I. Its major implication was to confiscate population savings deposits, reducing dramatically the volume of money available in the economy, M1 concept. The inflation rate at this point of history in Brazil was 2739.8% a.a., taking CPI as the basis of measurement. Moreover, the adoption of inflation targets since July, 1999 may affect estimation in the real balances and home prices equations. Thus, dummy variables were applied to account for these events in the Brazilian economy, depending of the equation estimated.

The macroeconomic variables applied in this paper are the following: Gross Domestic Product (PIB = Y); Household Consumption (C); Real Money Balances (M/P); Nominal Exchange Rate (ξ); Terms of Trade (ξF/P = ℑ); Prices (Ps); Nominal Money (M); Government Spending to Output Ratio (g); World Government Spending Position (BR and US).

3.2. Econometric Applications to International Economic Policy Transmissions

In this section our aim is to review briefly the applied literature on macroeconomic interdependence, based on Corsetti and Pesenti (2001) analysis, which presented different results from Obstfeld and Rogoff

8 IFS-International Financial Statistics of IMF; and IPEA-Research Institute of Applied Economics.
coming from rigidities on the labor market and monopolistic competition in the goods market. The applied papers in this field follow the initial empirical estimates proposed by Blanchard and Quah (1989). In their paper, the authors decomposed the shocks into two categories – transitory and permanent. The transitory shocks represent the short-run impact arriving from the exogenous variables in the model while permanent shocks represent the long-run impact from the same variables. They proposed to analyze these short- and long-run effects through an SVAR – a Structural Vector Autoregressive Model.9

The advantage of the SVAR models is allowing the identification of the restrictions imposed in the estimates, accordingly to proposed theory. Then, the theory can easily be tested empirically. Completely theory tests fully, the SVAR models are combined with exogeneity or causality tests. Therefore, the results can be interpreted as an economic policy shock from one country to the other in our case. Following is a brief review of the literature that depicts the application of SVAR models that tested the interdependence of economic policies between countries. The aim is demonstrating the versatility of application of SVAR models.

3.3. Applicability of SVAR Models for the Transmission of Economic Policy

Initially, the NOEM – New Open Economy Macroeconomics – literature used SVAR models to test pricing hypotheses. The price hypotheses tested in these models were PCP – *Producer Currency Price*, if prices should be determined equally in both markets (domestic and abroad), or PTM – *Pricing to Market* behavior and LCP – *Local Currency Pricing*, when prices are differentiated across markets (domestic and abroad). Under PCP, prices are determined according the currency of the producer, being a price prevailing to both markets. However, if prices are fixed in the producer’s currency, an exchange rate movement could affect its competitively abroad, just as in the case of traditional Mundell-Fleming model.

When testing the effects of monetary shocks on terms of trade, Clarida and Gali (1994) and Eichenbaum and Evans (1995) found that the underlying price hypothesis was PTM. Betts and Devereux (1997) extended the previous empirical models considering the trade balance surplus. They reached the conclusion that PTM better explains product and terms of trade movements when compared with models under Purchasing Power Parity and using the PCP hypothesis. As shown by Devereux et al. (2003), in the case of LCP, producers set prices in their own currency, and importing intermediaries set consumer prices in local currencies of the consumers. Then, a nominal appreciation improves the terms of trade, consistent with observations by Obstfeld and Rogoff (2000).

Comparing the two strategies of price setting, with PCP, the exchange rate is affected by both money and velocity shocks. Under PCP, as in Obstfeld and Rogoff (1995), an unexpected home monetary expansion increases domestic consumption directly, but part of this increase is offset by exchange rate depreciation, while it leads to foreign exchange rate appreciation, a reduction of the price level and an expansion of foreign real balances, increasing consumption abroad (Devereux and Engel, 2003, p.774).

Further development in theory testing was achieved by Dhrymes and Dimitrios (1997). They specify SVAR models that are more compatible with prevalent economic theory hypotheses. For instance, they tested whether the model is better specified when the variables are entered as forward looking or backward looking. Their main results were that: i) the international interest rate and the real exchange rate are determinants of the real output; ii) there is domestic and foreign money exogeneity; and iii) there is no money illusion.

9 See Sims (1980). Using SVAR models to test theoretical hypothesis was highly applied to Real Business Cycles. These literatures permit understanding theoretical and empirical relations through SVAR. Recently, Chari et alli (2005), Fernandes-Villaverde et alli (2007), Dupaigne et alli (2007) are helpful to SVAR applications to economic models.
Recently, the SVAR models were used to test wage rigidity implications to international transmission. For instance, Bergin (2003, 2004) also included the hypotheses of flexible price and wage rigidity testing whether prices were PCP or PTM. The hypothesis of wage rigidity was rejected in all the empirical tests. The PTM did explain most of the movements in the output; however, it did not perform well in explaining exchange rate movements. This result on the exchange rate was obtained by using a standard structural model for benchmarking. Thus, this last result discords with the results found in Clarida and Gali (1994) and Eichenbaum and Evans (1995).

In addition, SVAR were applied in NOEM testing the effects of monetary policies on the balance of payments. A test of long-run or permanent productivity shocks on the balance of payments was performed by Cavallari (2001). Productivity movements were defined as the first difference of the ratio of domestic to world output. Then, using the first difference of the ratio of the domestic to world output, the balance of payments to output, and the domestic to international interest rates, Cavallari (2001) found that monetary shocks cause no contemporaneous effect on real activity. However, the author did not include the exchange rate, which is considered crucial for understanding the mechanisms of international transmission of monetary policy.

Lee and Chinn (2002) extended the previous model to incorporate the exchange rate. While letting short-run effects of economic policy to fluctuate freely without restrictions, they estimated the long-run impact of an international monetary policy and found evidence of effects on exchange rate movements. The effects are transitory and compatible with the theory of the price being PTM. The main problem of this strategy of permitting the short-run effects being free of restrictions over estimations is related to the identification problem of structural shocks with SVAR applications.

A more elaborate model of international transmission was achieved by Giuliodori (2004), calling attention to the identification problem. The author proposed a three-equation system: i) the first formed by variations in the ratio of the domestic to the world output; ii) second, variations in the exchange rate; and iii) the ratio of the balance of payments to output. Also, the shocks on these variables are of the three natures: a) supply; b) demand; c) structural monetary. The permanent shocks are defined as originating from supply shocks or technology shocks. By estimating the system for the OECD countries, the author found that permanent shocks do affect the exchange rate permanently, but not symmetrically. For instance, in countries such as Austria, Belgium, Denmark, Holland, Japan, Swedish, and the United Kingdom, the exchange rate depreciates. However, in the remaining countries there is appreciation of the exchange rate. In another words, world supply shocks may cause different impacts depending on countries’ own characteristics and linkage to the world economy.

Also, Fink and Schüller (2013) apply the SVAR model to capture the transmission of adverse financial shocks from the U.S. economy to selected emerging countries, Brazil, Chile, Korea, Malaysia, Mexico, Philippines, South Africa, and Thailand. The results for the variance decomposition imply negative spillover effects of shocks arising from a financial index computed for the U.S. economy to these emerging countries. In general and on average, American adverse financial shocks caused 21% of variation in the real economic activity, 12% of the variation in the foreign capital flows, 18% of the variation in the interest rate and 22% change in the exchange rate of emerging in the analysis.

Moreover, Dias and McDermott (2004) applied Vector Error Correction (VEC) models to the equations of the theoretical model of Corsetti and Pesenti (2001) for the case of Brazil and US. In general, the results confirmed the theoretical model for the output, household consumption, and real balances. The long-run

10 National Financial Conditions Index (NFCI) of the Federal Reserve Bank of Chicago. The shocks are unexpected changes in NFCI and are called U.S. Financial Stress, considering the period from 1999 to 2012, in monthly terms.
relationship between the world fiscal position and the real effective exchange rate showed real appreciation resulting from expansionary fiscal policy shocks. It is worth mention that the period from 1980 to 2001, quarterly, received significant effects from exchange rate policy practiced in Brazil in the 1990s, varying within a predetermined interval. Improving the econometric method to account for the structural theoretical model, deepening the empirical approach, may bring greater robustness to the effects of transmission among trading partners.

Within the theoretical and empirical approach developed here, Dias et al. (2012) applied the SVAR methodology to evaluate international interdependence to two case studies, Argentina and European Union (EU) and Brazil and EU. The analyses emphasized the effects of permanent fiscal policy shocks arising from world government spending (domestic plus foreign country) on domestic consumption and domestic output of Brazil and of Argentina. In agreement with Corsetti and Pesenti (2001), the case of Argentina and European Union confirmed negative effects of world fiscal policy shocks on output and consumption of Argentines, causing deviations from their long-run averages, considering cumulative fiscal shocks. For the Brazilian economy, the results could not confirm beggar-thy-neighbor effects of EU fiscal policy shocks on Brazilian consumption and output.

The following section presents SVAR estimates to fiscal policy transmission in the long run, considering Brazil the domestic economy and United States, the foreign one. The estimations result of shocks simulations from impulse response functions applied to world fiscal policy position, a variable composed by the ratio of fiscal spending of Brazil and US as percentage of their respective output, on the Brazilian output, consumption, terms of trade, real money balances, and domestic prices. The variables were chosen from the theoretical framework provided by Corsetti and Pesenti (2001)11, which indicates the relationship among the main variables of the model.

The implications of macroeconomic policies of Corsetti and Pesenti’s (2001) model show that a permanent fiscal shock from a home country increases world fiscal spending through the variable g_h, raising home aggregate demand and output (Y_h). These reach the home nominal wage (W_h), affecting home prices (P_h) to rise. In consequence, there is a real appreciation of home terms of trade ($\xi H^*_F / P_h = \Xi$), implying home market buying less from abroad. Since real wages adjust by deacreasing in the home country, the long-run increase in home output is lower than the initial increase in home government expenditure (g_h). Moreover, world household consumption diminishes as a whole and prices rise in both countries, home and abroad. This happens because the increase in home government expenditures at home should relie on home goods and not foreign ones. Therefore, if the positive externality of foreign depreciation is offset by the reduction in foreign purchasing power, throughout reductions in both real wages and real balances, worsening by decreasing world consumption, this home fiscal policy would bring negative effects over the foreign country. Then, it would be a beggar-thy-neighbor policy. The channel of international policy transmission should occur through relative prices, or the real exchange rates, called by the authors as terms of trade. However, the negative impact in foreign consumption and output could be smaller if goods trading between both economies are substitutes, which would affect foreign prices in different directions.

4. Analysis of the Fiscal Policy Transmission from U.S. to Brazil12

4.1. Long Run Impact of World Fiscal Policy on Brazilian Household Consumption

11 The SVAR structural equations refer to (4), (5), (6), (10), and (11) from Table I of Corsetti and Pesenti (2001), displayed in Appendix I for convinience.

12 Technical notes on the econometric tests are available in Dias and Dias (2010).
According to Corsetti and Pesenti (2001), long-run real domestic household consumption depends on the government spending of the world (Brazil and US combined), or the world fiscal position (g_w). Here, the series is the variations around their respective long-run averages. In this bivariate model, the impacts of world fiscal position are evaluated by variations from respective long-run means, that is, changes in the moving averages of the variables.

The SVAR model allows testing the causality relations of fiscal shocks on long-run aggregate household consumption and provide two effects: i) arising from a unique shock, equivalent to short-run changes in government fiscal spending of both countries combined; and ii) cumulative shocks equivalent to long-run shocks in the world fiscal position. Thus, the system has the following SVAR specification:

$$y_t = \begin{bmatrix} \Delta \ln\left(\frac{G^*}{G} \right) \\ \Delta \ln(c/c^*) \end{bmatrix} C = \begin{bmatrix} C(11) & C(21) \\ C(21) & C(22) \end{bmatrix} e_t = \begin{bmatrix} p_t \\ t_t \end{bmatrix}$$

The international interdependence of domestic economy can be measured through a permanent shock (p_t), or cumulative one, in which foreign government spending grows more than domestic one. These expenditures would cause direct impact on the growth rate of long-run real consumption of the domestic country. If positive, this impact would result in *prosper-thy-neighbor* welfare and if negative it would be *beggar-thy-neighbor* to domestic welfare. The transitory shocks (t_t) are those occurring only once, or a unique shock.

Concerning estimations, the long-run consumption function is log-linearized. Therefore, household consumption in the long run (cc) reflects the difference of the logarithm of current consumption to its long-run trend period to period. Positive effects indicate that consumption is growing faster through time, so an improvement in the long-run consumer’s welfare increases the variable consumption (cc). The long-run consumption is obtained with the HP filter, from Hodrick and Prescott (1997). Considering deviations from trend, a permanent expansionary world fiscal policy means that government expenditure abroad, relative to its output, is increasing faster than government expenditure at home, relative to home output, increasing the variable gg. Thus, the difference of relative government expenditure abroad and home is rising. Among the initial tests performed are those about the stationarity of series, unit root tests. The tests used throughout the empirical section are DFGLS, augmented Dickey and Fuller (1979), PP, Phillips and Perron (1988), and AZ statistics, according to Zivot and Andrews (1992). All tests showed that the variables used in the estimations are stationary.

The test of lag order selection criteria initially indicated 04 (four) lags. Furthermore, SVAR estimations confirmed four lags through new LM (Lagrange Multiplier) and Wald tests of lag exclusion. The structural VAR estimations of equation (1) followed the recommended number of lags, and its estimated coefficients are displayed in the system of equations (2).

$$y_t(cc) = \begin{bmatrix} gg \\ cc \end{bmatrix} C(cc) = \begin{bmatrix} 0.089 \\ -0.0864 \end{bmatrix} e_t(cc) = \begin{bmatrix} p_t \\ t_t \end{bmatrix}$$

13 Equation (4) of Appendix I.
15 The values in parentheses below the coefficients are long-run standard deviations of SVAR, while the star (*) indicates the degree of significance, in this case 1%.
Granger causality tests over the system of long-run consumption (cc) resulted in $\chi^2 = 2.03$. This result indicates that the probability of gg Granger cause cc is close to zero in the short run. The Jarque-Bera test of normality of residuals indicates $\chi^2 = 271.92$, which rejects the hypothesis that the residuals are normal. However, most important is that the variance and the covariance of the residuals be stationary, having a stationary distribution. The results for stationary residuals are the following: AZ=-10.31*; DFGLS=-10.14*; and PP=-10.14*, with significance at 1%. Therefore, estimated residuals have a distribution that is not normal, but is stationary. The stability test of the SVAR indicates that AR characteristic roots are inside the unit circle. Thus, the estimated model in equation (2) performs impulse-response functions simulations to unique and cumulative shocks, observed within a period of 15 quarters. The first shock, with a unique impulse or transitory shock from gg to cc is displayed in Figure 1, first graphic. The second presents a cumulative impulse, as a permanent fiscal change in government expenditure of the world (gw) considering Brazil and US, from the variable gg to cc responses, graphic of cumulative impulse.

A unique shock or transitory, representing a fiscal policy shock in which US government spending proportionally exceeds the Brazilian one only once, causes decreasing home consumption relative to its trend for a short period of time. But, the tendency is household home consumption to return to stability, while oscillates around its average long-run consumption. Then, positive world temporary fiscal shocks increase the variance of consumption initially, but do not affect the Brazilian consumption permanently. However, the accumulated impulse, concerning a permanent government expenditure policy proportionally higher in US relative to Brazil would lead to a permanent reduction in long-run household consumption from its trend. Then, household consumption would be below its long-run in face of successive increases in world fiscal policy, causing beggar-thy-neighbor effects.

Figura 1: Impulse-Response Functions from gg to cc

Based on the theoretical results of Corsetti and Pesenti (2001), the macroeconomic interdependence of the Brazilian economy in relation to the U.S. economy occurs because changes in the fiscal position of the world arising from American government expenditure policy cause increases in global aggregate demand and increases their foreign prices and wages. As a result, the prices of imported goods rise for Brazilian residents, increasing the level of domestic prices. Then, the terms of trade depreciates at home, the real effective exchange rate for Brazil, reducing the purchasing power of domestic agents. The increase in relative prices induces domestic consumers to consume less and export more. However, world household consumption may also fall. This cumulative impact causes home consumption deviates from its long-run average. Therefore, there is a redistribution of activity towards foreign markets. Yet, even though exports rise from home depreciation, the share of household consumption in the Brazilian GDP is greater than the
share of exports, indicating that the negative externalities of terms of trade depreciated are larger than the increase in demand for Brazilian goods coming from the external shock, in agreement with the theoretical model. Nevertheless, permanent fiscal policy shocks, considering Brazil and US, reduce Brazilian household consumption in the long run, confirming beggar-thy-neighbor effects.

4.2. Long Run Impact of World Fiscal Policy on Brazilian Output

From Consetti and Pesenti (2001), home output in the long run would depend only on fiscal policy variables but monetary policy ones. In the international interdependence context, applied here to the Brazil and US case, long-run real domestic output responds to world position of government spending (Brazil and US combined), \(g_w \). Again, estimating a SVAR to this model is required log-linearizing the variables around the long-run trend. HP filters were applied to found the trend to the Brazilian output. Therefore, the variable \(y_t \) represents the difference of the log of home output from its trend, period by period. Positive impact of world fiscal policy expansion on \(y_t \) indicates that the current growth rate of Brazilian output is surpassing its long-run average.

Tests from DFGLS, PP, and AZ statistics prove stationarity for the variable \(y_t \). Preliminary lag structure tests showed 04 (four) lags. LM and Wald lag exclusion tests confirmed four as the optimal number lags. As before, the regression residuals did not show normality with the Jarque-Bera of \(\chi^2=420.07 \). However, stationarity tests to the residuals distribution attest 1% significance, with AZ=-10.24*; DFGLS=-10.12*; and PP=-10.13 *. Thus, the estimated model is similar to the equation (2), but substituting equation \(cc \) for \(y_t \). The results of this equation are as follows.

\[
\begin{bmatrix}
 y_t(\text{yy}) = \\
 \text{C(\text{yy})} = \\
 \text{e}_t(\text{yy}) = \\
\end{bmatrix}
\begin{bmatrix}
 g_w \\
 y_t \\
\end{bmatrix}
\begin{bmatrix}
 0.088 \\
 -0.086 \\
\end{bmatrix}
\begin{bmatrix}
 0.0658 \\
 0.0678 \\
\end{bmatrix}
\begin{bmatrix}
 0 \\
 0.0502 \\
\end{bmatrix}
\begin{bmatrix}
 0.0020 \\
 0.0033 \\
\end{bmatrix}
\begin{bmatrix}
 p_t \\
 t_t \\
\end{bmatrix}
\]

Since all the coefficients are significant at 1%, SVAR results indicate the relationship proposed by the theory that there is a long-run relationship between world fiscal policy and variations of domestic product is confirmed. However, additional Granger causality tests imply \(g_w \) does not Granger cause \(y_t \), with \(\chi^2 = 3.95 \), or 41%. This test indicates that the short-run relationship could not exist by Granger causality tests. Considering that long-run coefficients estimates from SVAR are significant, the impulse-response functions are performed for 15 quarters. The transitory impulse due to a unique shock from world fiscal position diminishes output growth rate in the long run, down to 0.07%. However, over time impulse response function shows oscillations of home output around the growth rate of long-run trend.

Otherwise, the accumulated impulse of the world fiscal position, refering to 1% increases in U.S. government spending proportionally higher than those of Brazil, permanently reduce the rate of growth of the Brazilian economy to its long-run rate to 0.05%. Therefore, beggar-thy-neighbor effects of long-run fiscal policy of Corsetti and Pesenti (2001) is confirmed for the growth rate of the Brazilian output, when considering the United States as a foreign economy.

Figura 2: Impulse-Response Functions from \(g_w \) to \(y_t \)

16 Equation (5) of Appendix I.
As indicated by the theoretical model, the transmission of fiscal policy can be associated with impacts in terms of trade of the home country. Relative prices rise due to high pricing of tradable goods coming from higher foreign prices. In effect, this can create an increased demand for tradable goods from, but a fall in domestic consumption of households. Recall that the weight of consumption in home aggregate demand is higher than tradable goods. Then, a rising world fiscal position coming from increasing U.S. government spending causes a drop in the growth rate of output to its long-run trend in Brazil. Therefore, international fiscal policy has beggar-thy-neighbor effects.

4.3. Long Run Impact of World Fiscal Policy on Brazilian Real Money Balances

This section aims to verify if there is an interdependence of the purchasing power of domestic money regarding U.S. fiscal policy, considering the world relative fiscal position between Brazil and the United States. In this SVAR estimation long-run real money balances comes from HP filter. The variable mm denotes time differences of the logarithm of real balances relative to its trend. Long-run deviations of domestic real quantity of money from trend indicate real balances, or the purchasing power of the domestic currency, are undergoing structural changes due to its dependence on world fiscal policy (gg).

The tests indicate stationarity for the variable mm. Initially, lag selection tests indicate the number four of lags as appropriate. After performing regressions structural tests, LM tests indicated five lags due to autocorrelation still present with four lags. However, the lag exclusion Wald test also confirmed the number of lags as four. Jarque-Bera results of $\chi^2 = 130.44$ indicated not normal distributed resid. Therefore, stationarity tests performed were: AZ = -9.87*; DFGLS = -9.82*; and PP = -9.80*; significant at 1%, indicating a distribution of stationary errors. The empirical model to long-run real money balances (mm) as dependent variable, representing variations in the growth rate of real money relative to its trend, and world fiscal government spending as independent variable, taking Brazil as domestic country and the United States as foreign one. The results are:

$$y_t(mm) = \begin{bmatrix} gg \\ mm \end{bmatrix} C(mm) = \begin{bmatrix} 0.1019 & 0 \\ -0.0932 & 0.1162 \end{bmatrix} \begin{bmatrix} p_t \\ t_t \end{bmatrix}$$

17 Equation (6) of Appendix I.
Additional Granger causality tests indicate that gg precedes mm, with a statistics of $\chi^2 = 10.95$, not rejecting at significance level of 5%, and accepting gg effects on mm, at significance level of 1%. According to Figure 3, world fiscal policy temporarily higher relative to Brazil does not affect permanently the purchasing power of the national currency. Instead, permanent world fiscal policy shocks, in which the U.S. government spending participation grows proportionately more than Brazilian government expenditure participation on output from its trend, implies permanent negative effects on real balances, since these expenditures shocks are cumulative. The permanent effects of 1% increase in gg can lead to a reduction in Brazilian real balances from -0.02% to -0.08%, which is relatively small, but cannot be neglected.

Figura 3: Impulse-Response Functions from gg to mm

Nevertheless, in this case, the fiscal policy of increasing U.S. government spending relative to Brazil can be classified as *beggar-thy-neighbor*. According to Corsetti and Pesenti’s (2001) model, the process of international fiscal policy transmission occurs via changes in the terms of trade from one country to the other. Theoretically, increasing U.S. government spending relative to Brazil raises U.S. aggregate demand, causing higher U.S. prices. This would depreciate Brazilian real exchange rate, which could raise demand for domestic export goods. Initially, the prices of tradable goods rise, transmitting to the overall domestic prices index. With higher domestic prices, the purchasing power of the domestic currency decreases, reducing real incomes and domestic demand for goods as well as world consumption. This effect is consistent with those found by empirical applications here.

4.4. Long Run Impact of World Fiscal Policy on Brazilian Real Exchange Rate

The Brazilian terms of trade from the model represents real effective exchange rate, from a concept that considers the relative prices to trading partners of a basket of sixteen countries, including US. The effects of long-run world fiscal position (Brazil and US) used the deviations of terms of trade to its long-run trend. The terms of trade trend comes from the HP filter. The required tests for robustness of SVAR result of stationarity for the long-run terms of trade (tt). LM and Wald Lag Exclusion tests indicated four lags. The results of the estimates of the structural VAR are:

18 Equation (10) of Appendix I.
The results indicate that the coefficient $C(21)=+0.0482$ is significant at 1%, the terms of trade are influenced directly by gg, composed by the U.S. fiscal policy as foreign country and Brazilian government expenditures, confirming previous analyzes and the transmission mechanism of international shocks. However, Granger causality tests imply gg does not Granger cause tt at 10%, $\chi^2=3.28$. Therefore, short-run world fiscal policy may not have significant impact to deviations of long-run Brazilian terms of trade from its trend, or to the growth of domestic real exchange rate.

Considering the estimated coefficients, simulations of shocks from 1% change in the world fiscal position are presented in Figure 4. The results show impacts of a unique shock of 1% change in world fiscal policy on the Brazilian terms of trade as deviations form its trend over 15 quarters. Initially, a transitory shock from gg causes depreciation in tt, however oscillating around its average afterwards. Through time, deviations of Brazilian terms of trade tend to zero. Although shocks of 1% increase of world fiscal position begin with a process of depreciation of the Brazilian terms of trade, over 0.04%, its variations tends to reduce over time, but remains with depreciation in the long run in relation to its trend.

Accordingly, considering that the U.S. fiscal spending occur in order to divert more than proportionally to the Brazilians and deviations are cumulative, this implies that there is a depreciation of the Brazilian terms of trade remaining in the long run. Theoretically, the depreciation would initially bring higher domestic competitiveness to home output traded with U.S. However, the cumulative effects indicate that there could be negative effects on aggregate domestic demand by boosting prices internally and causing reduction in the purchasing power of the national currency and real wages. These negative aggregate demand externalities arising from the depreciation resulting from the world government spending position would bring *beggar-thy-neighbor* effects.

Thus, the results are consistent with long-run negative effects of expansionary fiscal policy acting through international depreciation of terms of trade and reaching the home consumption, output, and Brazilian real money balances in the long run.

4.5. Long Run Impact of World Fiscal Policy on Brazilian Domestic Prices
As Corsetti and Pesenti (2001), domestic prices are affected by long-run world fiscal position, domestic monetary policy, and national government spending. This empirical analysis however represents a challenge. From 1980 to 2009, Brazilian prices have suffered significant changes due to the different inflationary processes in the economy. Therefore, the specification of the empirical model to be estimated requires clarification as to their effects.

First, domestic prices are represented by a ratio of the current price level and the price level in the long run, obtained by the HP filter. The difference of the logarithm of home prices in the concept expresses the difference between the inflation rate and its expectations in the long run (pp). Secondly, the quantity of money (means of payments, M1 concept) used in the analysis also underwent to transformations capturing the effects of monetary policy over home prices. Similarly, the stock of long-run money was constructed with the HP filter. The difference of the logarithm of the ratio of the stock of money to its long-run amounts refers to differences in their growth rates (mm). Therefore, cumulative shocks on the difference in the rate of money growth to its expected long-run average indicate an expansionary monetary policy. Thirdly, cumulative shocks from U.S. fiscal policy vis-à-vis Brazil in the world fiscal position represent an expansionary fiscal policy (gg). In short, this specification is equivalent to log-linearize equation (11) of Table 1 of Appendix I over its long-run behavior.

Considering stationarity for the variables of the model, from DFGLS and PP statistics, and the tests for lag selection, Wald and LM tests, indicating 04 (four) lags, the SVAR system equations are the following:

\[
\begin{bmatrix}
 y_{t, (mm, pp)} \\
 C_{t, (mm, pp)} \\
 e_{t, (mm, pp)}
\end{bmatrix} =
\begin{bmatrix}
 gg \\
 mm \\
 pp
\end{bmatrix}
\begin{bmatrix}
 0.0899 & 0 & 0 \\
 -0.0881 & 0.1057 & 0 \\
 -0.0462 & -0.0025 & 0.1153
\end{bmatrix}
\begin{bmatrix}
 p_t \\
 dm_t \\
 pp_t
\end{bmatrix}
\]

The coefficient C (32) is not significant to acceptable levels, while others are significant at 1% (*). The Granger causality tests indicate the variables Granger cause the quantity of money, but not the prices, with \(\chi^2 = 8.41\). Then, the equation is estimated by eliminating the coefficient C(32) and the over-identification of causality was performed. The coefficient of monetary policy in pp, C(32) was not significant however. The over-identifying test produced a \(\chi^2\) statistic of 0.057, therefore does not reject the hypothesis that the coefficient is zero. This result indicates that long-run variations in domestic prices are associated with supply shocks and demand shocks nationally and internationally. The estimated results are shown in SVAR system equation (7).

\[
\begin{bmatrix}
 y_{t, (mm, pp)} \\
 C_{t, (mm, pp)} \\
 e_{t, (mm, pp)}
\end{bmatrix} =
\begin{bmatrix}
 gg \\
 mm \\
 pp
\end{bmatrix}
\begin{bmatrix}
 0.0899 & 0 & 0 \\
 -0.0881 & 0.1057 & 0 \\
 +0.0881 & 0 & 0.1153
\end{bmatrix}
\begin{bmatrix}
 p_t \\
 mm_t \\
 pp_t
\end{bmatrix}
\]

Moreover, the coefficient (gg) in (mm) proved to be significant, the U.S. fiscal policy affects Brazilian monetary policy in the long-run. The reason is simple, the increases in U.S. government expenditures expand U.S. income internally and their aggregate demand rise, raising American prices. On the one hand, the initial impact of higher aggregate demand in the U.S. rests in part on imported products. In turn, if there are more Brazilian exports, this increases domestic reserves, which are converted into domestic

\[\text{Equation (11) of Appendix I.}\]
currency. Therefore, the permanent increase in world fiscal position (gg) increases (mm) in Brazil, implying that long-run growth of domestic money is higher than its long-run trend.

In analyzing the effects of the world fiscal position on Brazilian domestic prices, both transitory and permanent shocks are observed in Figure 5. First, temporary shocks are effects of a single change in the world fiscal policy (unique shock), and second, permanent shocks represents cumulative changes. Thus, transitory shocks from world fiscal policy (gg) cause increase in the growth rate of Brazilian price index above 0.005%. In the long run a unique shock is likely to vanish because their oscillations reduce towards prices trend. However, the accumulated shocks of 1% increase in the U.S. fiscal policy above the Brazilian one (gg) on Brazilian prices result in permanent price increase above its trend. Note that this cumulative effect can raise the growth rate of the price level up to 0.015% in 15 quarters.

According to Corsetti and Pesenti (2001), this behavior of domestic prices in relation to the international fiscal position, linking government spending of the United States and Brazil, proportional to their output respectively, indicates the trade between Brazil and U.S. are predominantly of substitute goods, considering the long run means. Thus, in accordance with the theoretical and empirical results, despite the beggar-thy-neighbor effects found for U.S. fiscal policy, these are mitigated by commercial relations. When the United States increase their government expenditures, raising world fiscal position, the Brazilian terms of trade depreciate and domestic aggregate demand loses purchasing power, but turns to the purchase of domestic goods, partly offsetting the losses in Brazilian income, but increase prices in the long-run.

5. Final Considerations

The implications of economic interdependence among trade partners have been discussed concernin the need for coordination of economic policies and the degree of efficiency to ensure increasing or at least keeping welfare. The literature presents conflicting results on the effects of macroeconomic policies practiced in a country to its trade partners. The theoretical and empirical approaches have developed over time, responding to eminent problems arising in national markets. In the new open macroeconomics, Obstfeld and Rogoff (1995) showed that in face of producer price rigidities (Devereux and Engel, 2003), a temporary increase in government spending implies a proportional increase in global output and maintenance of private consumption. On the other hand, a permanent increase in fiscal spending raises output in the short run above its long-run, temporarily decreasing the real interest rate, inducing agents to
smooth their consumption over time. Thus, fiscal policy would have no *beggar-thy-neighbor* effect. In contrast, Corsetti and Pesenti (2001) deepen a particular case of Obstfeld and Rogoff (1995) on labor and goods market rigidities coming from imperfect competition. The macroeconomic transmissions of expansionary fiscal policy on the welfare cause *beggar-thy-neighbor* effects to trade partners.

In this context, we tested the theoretical propositions of Corsetti and Pesenti (2001) to identify the effects of world fiscal policies on long-run consumption, gross domestic product, real money balances, real effective exchange rate, domestic prices and monetary policy to Brazil, the U.S. being the foreign economy. According to the empirical results, an expansionary world fiscal policy, that exceeds U.S. spending over the Brazilian one permanently, in proportion to their GDP, shifts their terms of trade. Initially, the depreciation of the real exchange rate benefits domestic exports and makes imports more expensive. Consequently, there is higher inflow of foreign money, improving the balance of trade. However, in the long run, domestic real balances decrease, reducing the purchasing power of households. Furthermore, the long-run real variables are reduced, such as GDP and consumption, confirming negative externalities of the shock and *beggar-thy-neighbor* effects, as indicated by Corsetti and Pesenti (2001).

References

Appendix I

In what follows, we replicate Table II of Corsetti & Pesenti (2001) that displays the short-run and the steady state solutions of the model in a reduced format.

<table>
<thead>
<tr>
<th>Determinants of Home welfare</th>
<th>Short-run consumption</th>
<th>Short-run output</th>
<th>Short-run real money balances</th>
<th>Long-run consumption</th>
<th>Long-run output</th>
<th>Long-run real money balances</th>
<th>Long-run terms of trade</th>
<th>Long-run Home good price</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C = a_1 (\tilde{M}_W)^{1/\rho}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Y = a_2 (\tilde{M}_W)^{1-\gamma} (\tilde{M}_W)^{1/\rho} + G$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{M}/\bar{P} = a_3 \tilde{M}_W$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tilde{C} = a_4 (\tilde{g}_W)^{-1/(1+\rho)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\tilde{Y} = a_5 (\tilde{g}_W)^{1/2} (\tilde{g}_W)^{-(1-\rho)/(2(1+\rho))}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{M}/\bar{P} = a_6 (\tilde{g}_W)^{-\rho/(1+\rho)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prices

$1 + r = a_7 (\tilde{M}_W)^{-1} (\tilde{g}_W)^{-\rho/(1+\rho)}$ Short-run real interest rate

$E P_F^t / P_H = a_8 \tilde{M}_R$ Short-run terms of trade

$E = a_9 M_R$ Nominal exchange rate

$E \tilde{P}_F / P_H = a_{10} (\tilde{g}_R)^{-1/2}$ Long-run terms of trade

$\tilde{P}_H = a_{11} M (\tilde{g}_R)^{-(1-\rho)/(2(1+\rho))} (\tilde{g})^{1/2}$ Long-run Home good price

$a_1 = \gamma (\gamma_w)^{(1-\rho)/(1+\rho)} (\tilde{g}_W)^{-1/(1+\rho)} (M_{R_0})^{1-\gamma} (M_{W_0})^{\gamma};$
$a_2 = \gamma^{(1-\rho)/2} (\gamma_w)^{(1-\rho)/(2(1+\rho))} (\tilde{g}_W)^{-1/2} (M_{R_0})^{-(1-\gamma)} (M_{W_0})^{\gamma} \Phi^{1/2} (\Phi_w)^{(1-\rho)/(2(1+\rho))};$
$a_3 = \chi [\delta + \gamma (\gamma_w)^{(1-\rho)/(1+\rho)} (\tilde{g}_W)^{\rho/(1+\rho)} (M_{W_0})^{1-\gamma}] M_{R_0}^{1/2};$
$a_4 = \gamma (\gamma_w)^{(1-\rho)/(1+\rho)} (\Phi_w)^{1/2};$
$a_5 = \gamma^{(1-\rho)/2} (\gamma_w)^{(1-\rho)/2} (\Phi_w)^{1/2} (\Phi_w)^{(1-\rho)/(2(1+\rho))};$
$a_6 = \chi [(1 + \delta) / \delta] \gamma (\gamma_w)^{(1-\rho)/(1+\rho)} (\Phi_w)^{\rho/(1+\rho)};$
$a_7 = \beta (\gamma_w)^{(1-\rho)/(1+\rho)} M_{R_0};$
$a_8 = [\gamma (1-\gamma)]^{-1/2} (\tilde{g}_R)^{-1/2} M_{R_0}^{1/2};$
$a_9 = \chi^* \chi^{-1} [(\gamma (1-\gamma)]^{\rho};$
$a_{10} = \gamma (\gamma (1-\gamma))^{1/2} (\Phi_R)^{-1/2};$
$a_{11} = (\alpha_4)^{\rho} (\alpha_6)^{-1} \Phi^{-1}.$

The index R refers to ratios of Home to Foreign variables. The index W refers to geometric averages of Home and Foreign variables with weights γ and $1-\gamma$. The constants are defined in Corsetti & Pesenti (2001).

A1. SVAR Model

The SVAR (Structural Vector Autoregressive) model was developed by Sims (1980) and Bernanke (1986). We follow Hamilton (1994) in presenting the SVAR model. The VAR (Vector Autoregressive) model can be represented as follows:

\[
\begin{align*}
 y_t &= A_0 + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t \\
 \text{where } y_t &= (y_{t1}, \ldots, y_{tk}) \text{ is a random vector of } k \times 1 \text{ elements; } A_0 \text{ is a vector of } k \times 1 \text{ parameters; } A_1 \text{ through } A_p \text{ are parameter matrices of dimension } k \times k; \text{ and } u_t \text{ is an orthogonalized vector with the following characteristics: } u_t \sim N(0, S) \text{ and } E(u_t u_s^\prime) = 0 \text{ for all } t \neq s. \text{ This VAR model can be rewritten in the following way:}
 \\
 \begin{align*}
 y_t &= A_0 + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t \\
 &= A_0 + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t \\
 &= A_0 + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t \\
 &= A_0 + A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t
 \end{align*}
\]

The matrices \(A \) and \(B \) represent the system state in the short run. The long-run analysis of this system requires the VAR to be stable or \(y_t \) to fluctuate around its mean and the matrices \(A \) and \(B \) not to be singulars. Therefore, by making \(A = A_0 + A_1 y_{t-1} + \ldots + A_p y_{t-p} \) we obtain its inverse as \(A^{-1} \).

By pre-multiplying equation (2) by this inverse matrix we have a long-run system as

\[
\begin{align*}
 y_t &= A^{-1} B e_t = C e_t
 \end{align*}
\]

Here \(C = A^{-1} B \) is the long-run matrix of response to shocks. This result implies that \(S = B B^\prime \) is the matrix of variance and covariance of \(u_t \). By imposing restrictions on the parameters in this matrix we can identify the system in order to analyze long-run policy shocks. The restrictions are of two orders: i) ordering the variables in the equations; ii) contemporaneous exogeneity. Both restrictions should be derived from the theory being analyzed.